Adenosine A(3) receptor-mediated potentiation of mucociliary transport and epithelial ciliary motility.
نویسندگان
چکیده
To examine the effect of adenosine A(3) receptor stimulation on airway mucociliary clearance, we measured transport of Evans blue dye in rabbit trachea in vivo and ciliary motility of epithelium by the photoelectric method in vitro. Mucociliary transport was enhanced dose dependently by the selective A(3) agonist N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine (IB-MECA) and to a lesser extent by the less-selective N(6)-2-(4-amino-3-iodophenyl)ethyladenosine, whereas the A(1) agonist N-cyclopentyladenosine (CPA) and the A(2) agonist CGS-21680 had no effect. The effect of IB-MECA was abolished by pretreatment with the selective A(3) antagonist MRS-1220 but not by the A(1) antagonist 1,3-dipropyly-8-cyclopentylxanthine or the A(2) antagonist 3,7-dimethyl-L-propargylxanthine. Epithelial ciliary beat frequency was increased by IB-MECA in a concentration-dependent manner, the maximal increase being 33%, and this effect was inhibited by MRS-1220. The IB-MECA-induced ciliary stimulation was not altered by the Rp diastereomer of cAMP but was greatly inhibited by Ca(2+)-free medium containing BAPTA-AM. Incubation with IB-MECA increased intracellular Ca(2+) contents. Therefore, A(3) agonist enhances airway mucociliary clearance probably through Ca(2+)-mediated stimulation of ciliary motility of airway epithelium.
منابع مشابه
Adenosine activation of A(2B) receptor(s) is essential for stimulated epithelial ciliary motility and clearance.
Mucociliary clearance, vital to lung clearance, is dependent on cilia beat frequency (CBF), coordination of cilia, and the maintenance of periciliary fluid. Adenosine, the metabolic breakdown product of ATP, is an important modulator of ciliary motility. However, the contributions of specific adenosine receptors to key airway ciliary motility processes are unclear. We hypothesized that adenosin...
متن کاملEffect of azelastine on sulphur dioxide induced impairment of ciliary motility in airway epithelium.
OBJECTIVE The effect of azelastine on airway mucociliary transport function was studied by measuring ciliary motility of human bronchial epithelium in vitro with a photoelectric method. METHOD Bronchial epithelial cells were obtained by fibreoptic bronchoscopy, mounted in a Rose chamber, and perfused with Krebs-Henseleit solution. The preparations were placed on a microscope stage equipped wi...
متن کاملRole of macrophage-stimulating protein and its receptor, RON tyrosine kinase, in ciliary motility.
Macrophage-stimulating protein (MSP) is an 80-kD serum protein with homology to hepatocyte growth factor (HGF). Its receptor, RON tyrosine kinase, is a new member of the HGF receptor family. The MSP-RON signaling pathway has been implicated in the functional regulation of mononuclear phagocytes. However, the function of this pathway in other types of cells has not been elucidated. Here we show ...
متن کاملContinuous mucociliary transport by primary human airway epithelial cells in vitro.
Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, br...
متن کاملDevelopment and validation of a method of cilia motility analysis for the early diagnosis of primary ciliary dyskinesia.
BACKGROUND Primary ciliary dyskinesia (PCD) is a clinically uniform entity, but cilia motility and structure can vary between patients, making the diagnostic difficult. The aim of this study was to evaluate the sensitivity and specificity in diagnosing PCD of a system of high-resolution digital high-speed video analysis with proprietary software that we developed for analysis of ciliary motilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 282 3 شماره
صفحات -
تاریخ انتشار 2002